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LElTER TO THE EDITOR 

Short-range corrections to the order parameter of the king 
spin glass above the upper critical dimension 

C De Dominicist, I KondorS and T TemesvariS 
t Service de Physique Theorique de Saclay$, F-91191 Cif-sur-Yvette Cedex, France 
$ Institute lor Theoretical Physics, E6tv6s University, Budapest, Hungary 

Received 7 January 1991 

Abstmct. The expansion of the  order parameter q ( x )  of an king spin glass in the inverse 
number I / >  of interacting neighbours, corresponding to the standard field theoretic loop 
expansion, is considered above d = 6 in the vicinity ofthe critical temperature. At first-loop 
order and in dimensions d > 8, q ( x )  is linear with an essentially temperature-independent 
slope and becomes a constant q1 - 1 ( I  is the reduced temperature) beyond a breakpoint 
x, - 1, just as in mean-field theory. For t1d12’-4/z<< I the same holds true also i n  the range 
b < d  <8, but in the fluctuation dominated regime 1 i d 1 2 ) - 4 / z s  1 both the slope e of q ( x )  
and the breakpoint acquire a non-trivial temperature dependence: and x, - 
l*I2-’l2. Replica symmetry-breaking effects are found not only to he stable but even 
enhanced by fluctuations as d decreases. The shifts i n  the exponents associated with q ( x )  
together with those in the exponents of the AT line, of the characteristic lengths, etc. 
observed previously by Green el 01 and by Fisher and Sompolinsky can all be incorporated 
into an effective mean-field theory valid forb< d < 8. It is argued that higher-loop correc- 
tions cannot modify the exponents predicted by this effective mean-field theory. 

Parisi’s mean-field theory (MFT) [ I ]  has now been widely accepted as the proper 
solution of the infinite-ranged (or infinite-dimensional) Sherrington-Kirkpatrick [ 2 ]  
spin-glass (SG) model. The problem of the finite-ranged spin glass in finite dimensions 
has remained controversial, however. On the one hand, the pheonomenological scaling 
approach, pioneered by McMillan [3] and extended by Fisher and Huse [4] and by 
Bray and Moore [ 5 ] ,  has led to the conclusion that some of the most essential features 
of Parisi’s MFT (like the existence of infinitely many, hierarchical organized phase 
space valleys, with the associated non-trivial order parameter q ( x ) ,  or persistence of 
the SG transition in an external magnetic field) will be absent in a finite-ranged model 
in any dimension d COO, or (according to Bray and Moore’s less radical position) 
below d = 6 .  On the other hand, recent evidence from a number of sources seems to 
point in the opposite direction: a l l d  expansion by Georges er a l [ 6 ]  shows that replica 
symmetry-breaking effects are actually enhanced with decreasing dimension. Monte 
Carlo work by Reger er al [7] finds a non-trivial distribution P ( q )  of phase space 
distances in d = 4, while Caracciolo er al [ S I  find strong indications for a non-trivial 
q ( x )  in d = 3  also in a field. 

The powerful methods of field theory, namely the loop-expansion around MFT, 

offers a complementary alternative to the I l d  expansion. The building blocks of such 
an interacting SG field theory have been at  our disposal for some time now: the complete 
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set of free (Gaussian) propagators has been determined [9] and their physical meaning 
has been revealed [ 101 by expressing them in terms of overlaps of spin-spin correlation 
functions. It has been clear from the outset that the construction of the interacting 
field theory will not be an easy job: it was recognized, for example, that the anomalously 
strong infrared singularities in some of the free propagators lead to a paradox already 
in d = 6  [lo]. These high infrared powers were shown to be intimately linked to the 
small x behaviour of q ( x )  and, on the basis of a preliminary analysis of the one-loop 
equauun ui stare, IL was suggesieu ~ i ia i  u u c u a I u m  may suppress q l x )  lor small x so 
allowing the theory to be continued to below d = 6  [ll]. 

Our purpose here is to examine the first-loop correction to q ( x )  in detail. We work 
in the vicinity of the transition temperature throughout and in zero field in most of 
the paper. Also, we restrict ourselves to the dimensionality range d > 6, i.e. above the 
upper critical dimension. 

spins on a d-dimensional lattice: 

*:._ .r ..... : _1 .L.. 0 ..-...-I:__. -,..\ r-. - ~ ~ ~ - , ,  ~~ ~~ 

a..-".-d:-"-^:... :" -- E A  A "  A"A--",." ,;L~...,..A.%, rill PI-" ^ P  h, T":.." 
""I >ra,rrrrg yU"u 1D 'lLl ~u~'l_LuJ-~IIucLJvI'-II~c l l lUUCl L ' L J  ,U1 'l JJJLCL" U, 1* 'J"1& 

X = - 1 Josisj s,=*l (1) 
($1 

where the summation is over all pairs ( i j ) ,  but the interaction is finite ranged 

j;, are independent, Gaussian distributed random variables with zero mean and variance 
A, f is a smooth, positive cut-off function: f ( x )  - 1 for x S 1, and fails off sufficiently 
fast, say exponentially, for x >> 1. p is the range of the interaction in units of the lattice 
spacing a, while z = pd is the number of spins within the interaction radius. For p + m 
equation (ij goes over into the SK modei, whiie, for p iarge but finite, i j z  can be used 
as an expansion parameter to calculate corrections to the M F  results. 

The average over the random couplings (denoted by an overbar) is taken by the 
usual replica trick [12]. Through a number of formal steps [13] the nth power of the 
partition function can be expressed as a functional integral 

over a set of fields @J"O, where a, p are replica indices. Near the transition temperature 
it is sufficient to expand the Lagrangian 3 to quartic order and of the possible quartic 
couplings to keep only the one responsible for replica symmetry breaking: 

Due to the finite range of the interaction the wavevector summations here are all 
restricted to IpI < l/pa. 

The coupling constants w, U, and the MF reduced temperature 7 = ( TyF- T ) /  T y F  
are related to the parameters of the original Hamiltonian (1) through the combination 
K=(A/kBT)2-l as w = K ' ,  u = K 4  and ~ = f ( K ~ - l ) ,  respectively, but with aslight 
generalization of the model we may regard w and U as essentially free (positive) 
parameters, while T (>O) will be considered small. 
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Now the field is split into an equilibrium and a fluctuating part as 

@J;P=m90pS:;+*;@. (4) 

The equilibrium value 9e.p is determined by the condition that the average of +;' 
(taken with the weight (exp(-Lf)) vanish. To first order in l / z  this yields the following 
equation of state: 

where the propagators G in the loop terms are given by 

(G- ' )ap : rs  = (PZ-2T-2U4~p)S$,y.a- W(S,K,'%, + S Z 9 p y  + 8,K;%,+S:i,'qm,) 

and a factor ap has been absorbed into the momentum p. 
Now let T= be that value of T where the solution of (5) vanishes. This T= must be 

of order l/z. Since the loop terms are already 112, T can be replaced by the 'true' 
reduced temperature f = T-T<=( T,- T ) / T ,  in the propagators on the RHS of (5). It 
is evident from (6) that in the limit f, 9',, +O, G , , , ,  = l /p2  and Gm.r.r, = wqep/p4. 
Substituting these into (5) and dropping all terms higher than linear in 9., we get the 
shift in the critical temperature: 

( 6 )  

For reasonable values of the coupling constants (such as w - U - 1 corresponding to 
the original model) T?"> T,, as expected. 

Now we combine ( 5 )  and (7), and perform the replica summation by assuming 
that 9m, has a Parisi-like structure [I]: 

2 t q ( x ) - w ( [ ~ d y q 2 ( y ) + x q 2 ( x ) + 2 q ( x )  ~ ~ ' d y 9 ( y ) ) + ~ u q 1 ( x ) = L , ( x ) + L . ( x )  (8) 

where 

The parametrization for G is as in [ 9 ] .  

leads to the well known result: 
In the M F  limit (z+m) equation (8) is easily solved by repeated differentiation and 
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The propagators in the loop terms L,, L. can be obtained by inverting (6) which, 
under the Parisi parametrization, becomes a system of seven integral equations for G 
as functional of q(x). This system has been solved in the case q(x) = qMF(x) in [9] 
and the RHS of (8), being of O(l/z), this special solution is all we need in the following. 
(In fact, the solution [91 is given for U = w = 1, the generalization is a matter of a trivial 
rescaling.) 

The propagators obtained in 191 are the exact solutions of (6), so, as we have shown 
elsewhere [lo], they contain all the information about the correlations of Gaussian 
fluctuations both inside a single phase space valley and between the different valleys. 
As such, they exhibit an extremely complicated dependence on the replica variables, 
but also on the momentum, having a markedly different behaviour in p,  according to 
whether it is comparable to the 'large mass'- t ' I 2  or to the 'small mass'- t of the 
theory [14], or larger (smaller) than both. We have to realize, however, that most of 
this vast amount of information is not actually needed in the present context. 

As long as q ( x )  can he calculated perturbatively at all, it must stay close to its M F  

form ( l l ) ,  i.e. it must have a linear piece for small x, followed by a plateau beyond a 
breakpoint. In order to find such a solution, we need the loop terms in (8) to O(x3) 
only. Expanding L ,  and L, to that order we find that the constant and the x2 terms 
vanish, as they should indeed, if a solution with the said properties is to exist. The 
coefficients of the x, x3 terms are still far. too complicated to be displayed here. As the 
next step towards rendering the job manageable, we note that working above the upper 
critical dimension, i.e. for d > 6, one does not expect the far infrared region to give 
any significant contribution. Given the unconventional nature of the spin-glass propa- 
gators we felt nevertheless compelled to check this point and found that the contribution 
of the range where the momentum is comparable to or smaller than the small mass, 
p 2 s  t 2 e  I ,  is indeed quite negligible. Therefore, we are certainly permitted to expand 
the x and x3 terms in the loops by assuming that p is comparable to the large mass, 
p -  t"2, or larger, and set an infrared cut-off, lying somewhere between the small and 
large mass scales, to the loop integrals in (9), (IO). As a matter of fact, standard power 
counting tells us that above the upper critical dimension the region near the large mass 
should not normally matter either; all the relevant contributions should come from 
the vicinity of the upper cut-off. Working out the expansion we find that this is indeed 
so for all the terms except for a single one which scales as p - 8  and hence does pick 
up important contributions from the region near p - t l i 2  when we go below d = 8 .  
Apart from this particular term even the large mass can he neglected compared with 
p 2 ,  which then leads us to the following simple forms: 

Terms such as xt2 or x't, etc. which do  not affect the leading temperature dependence 
of the solution, have all been dropped here, except in the 'dangerous term', the last 
in L,, discussed above. 

Let us now assume that d is above, not only 6, hut 8. Then the large mass can be 
discarded also in the dangerous term, and a solution of the form 
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can be readily found by, e.g., simple substitution into (8). Collecting terms to l / z  the 
slope works out to be 

(15 )  
w [ 12zKd( w4 1 5 w2 1 U )] 

d > 8  c = -  I+- ---+ 
2u U d - 8  6 d - 6  2 d - 4  

where (27r)dKd = Sd is the surface of the d-dimensional unit sphere, i.e. 2md"/r(d/2). 
For the breakpoint we get 

d > 8. (16) 

Finally, the maximum of q ( x )  can be obtained simply from q ,  = cx, : 

valid for d > 6. 
For d > 8 the results above are as expected: mean-field terms plus well-behaved 

corrections of O(l/z).  Moreover, the correction to the slope is negative, while that to 
the breakpoint is positive for any w, U > 0. This means that replica symmetry breaking 
is not only stable against fluctuations, but is actually enhanced by them as d decreases, 
in complete agreement with the conclusion from the I /d  expansion [6]. Note also that 
while the leading l / d  corrections to ~n come from small-scale fluctuations, the l / r  
expansion picks up the effect of the very long wavelength ones, so the two approaches 
are in a sense complementary and their mutual consistency lends further support to 
the conclusion above. 

As we approach d = 8 from above, the corrections to c and x, blow up. The 
breakdown of the l / z  expansion at d = 6 would be perfectly normal: 6 is the upper 
critical dimension of the model. Why the expansion should break down at d = 8  
demands explanation, however. It is very instructive at this point to go back to the 
definition of the propagators, solve the Dyson equations (6) by direct iteration for 
p2 >> I >> s i a  (remember the replacement T +  I )  to order P - ~ .  and drop subleading terms 
as earlier. In so doing one finds: 

The meaning of the various terms in (12), (13) can now be understood by a term-by-term 
comparison with (18), (19):  they are the l / r  corrections to (the derivatives with respect 
to qms of) the two-, three- and four-point functions. The dangerous term in particular, 
is related to the four-point function at zero external momenta. It is evident that this 
quantity (the 'box graph') should be singular a t  d = 8. 

It must be clear that the effect is not a peculiarity of spin glasses only. Many-point 
functions at exceptional momenta (where power-counting arguments break down) can 
blow up in high dimensions in any theory. For example, the sixth derivative of the 
Helmholtz potential with respect to the magnetization in an ordinary 'p4 theory will 
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be singular in d = 6, i.e. above the upper critical dimension of that model. This six-point 
function is related to a higher nonlinear susceptibility. It will also directly enter physical 
quantities such as the ordinary susceptibility as an insertion in some higher-loop 
corrections, but then finite momenta flow through it and the singularity will be 
suppressed by phase space factors, so that it will not cause the susceptibility to blow 
UP. 

Similarly, the singular contribution to the four-point function in our spin glass 
model will not lead to a proliferation of singularities in higher orders. Therefore, if 
we find a way to incorporate its effect into q ( x )  the corrections to this new solution 
will be small. 

Let us now go into the dimensionality range 6 <  d < 8.  The bare uq'(x) term on 
the LHS of (8) is now competing with the dangerous term - ~ - ' w ~ q ' ( x ) f ' ~ / ~ ' ~ ~  coming 
from L, on the right. As long as z is very large and f not too small, the bare term 
wins, and in this temperature region the ordinary l / z  expansion will still work, with 
( l / ~ ) f ' ~ / ~ ' - " < <  1 providing a kind of Ginzburg criterion for its limit of validity. If we 
go closer to T,, however, the bare term becomes negligible compared with what was 
supposed to be a small correction. It is clear that under these circumstances the 
dangerous contribution to the four-point function must be absorbed into the mean-field 
part on the left of (8) and only the rest of the loop terms can be regarded as a correction. 
With this we define an effective mean-field theory having the same structure as the 
original one but with the replacement of the bare four-point coupling U by 

w4 Xd-5 (20) 
= U +  12Kd- (2f)'d/2'-4 dx- 6 < d < 8 .  

Z I: (x2+1)' 

The solution for q ( x )  in this effective MFT will be of the same form as (11) with U 
replaced by G everywhere. Hence in the fluctuation-dominated regime, where t d ' Z - 4 / ~  >> 
I ,  we find that the slope e =  w / 2 C  of q ( x )  is c - ~ f ~ - ~ / ~ ,  that is formally of O ( z )  yet 
very small, while the breakpoint is xI - Gt - f 'd'z ' -3  / z .  The maximum of q ( x )  is 
independent of U, so it remains q1 - f as in ordinary MFT. A word of caution may be 
in order here: in the predictions of the effective MFT d must not be taken to be exactly 
6 .  At d = 6 the other terms in L, and L, discarded in the effective MFI will also become 
important and produce the usual logarithms appearing at the upper critical dimension. 
We wish to discuss these and the region d < 6 in a separate publication; for our present 
purposes d must always be considered as maybe close to but definitely larger than 6 .  

Before deriving further conclusions from our effective MFT we have to clarify an 
all important point. We have seen how a dangerous correction to the four-point function 
enters the slope of 9 ( x )  and modifies its temperature dependence for 6 <  d < 8. Com- 
pared with this, the other terms in (IZ), (13) represent small corrections that can be 
disregarded as far as the leading temperature dependence of 9 ( x )  is concerned. It is 
obvious, however, that if we carry out the expansion of the loop integral to higher 
than cubic order in 9 we shall generate corrections to the five-, six-, etc, point functions 
that blow up in higher and higher dimensions and, entering the higher Taylor coefficients 
of q ( x ) ,  threaten to destroy the linear solution described above. Now it is easy to see 
from (6) that the most dangerous type of terms that may appear on the right of the 
equation of state are of the form 9 ~ p / p 2 k + 2 .  It is quintessential that, as a detailed 
examination of the closed expressions of the propagators but also a direct expansion 
of the Dyson equation (6) demonstrates, the highest term of the above type that is 
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actually allowed is the 9 & / p 8  as in .(IS) that we have already included. Terms in 1/plo 
do not contain q:B but typically, e.g., 9:p 9aY90p, which as an effect of ultrametric 
geometly is -xq4(x ) .  More generally, for k > 3 ,  9 $  is substituted by combinations 
behaving as x ' q X ( x ) ,  la 1. Hence their effect is negligible. 

The renormalization of the four-point function has far reaching consequences for 
the structure of the theory. With the replacement U + C our earlier results [ 141 concern- 
ing the fluctuation spectra can be readily extended to the present effective MFT: one 

the upper edge of the small mass band, (2G9;)'12, becomes - ( w ~ / z ) ' / * ~ ' ~ / ~ ) ~ ~ .  As d 
approaches 6 this goes as - I l l 2 ,  i.e. becomes of the same order in f as the large mass! 
We are still left with infinitely many masses, of course, hut instead of two bands scaling 
with different powers in temperature, both bands now scale with the same MF-like 
power. Similar effects are observed in other quantities as well. For example, the slope 
nf the order parzmeter fcnctinn becoming e - t in the ! h i t  d - (?+ !hc who!: fcnction 
q ( x )  becomes proportional to the reduced temperature which means that the various 
order-parameter combinations like 9 ,  or A = ( 9 ,  -j: dx 9 ( x ) ) /  T which, above d = 8, 
are - I  and - t', respectively, for 6 < d < 8 behave as 9, - f and A - t'"/2'-2 respectively, 
i.e. they scale with the same power when d + 6+. As a consequence of the shifts in 
various exponents, some scaling laws (e.g. pS = 1 - a / 2  + y / 2 ) ,  which are badly violated 
in  the ordinary MFT of spin glasses, get gradually restored as d approaches 6.  The 
expert reader must have noticed that the scaling predictions of our effective MFT are 
all strictly parallel to those obtained by Fisher and Sompolinsky [I51 on the basis of 
a simple two-parameter renormalization group argument. The use of a two-parameter 
RC above the upper critical dimension, i.e. in the context of a non-renormalizable 
theory with its infinitely many renormalization constants, is questionable, however, 
and this has cast a shade of doubt on their conclusions. We believe the justification 
for their procedure lies in the argument about the suppression of the singular higher- 
point vertices by powers of the replica variable x < x I  << 1, presented above. 

To make further contact with earlier work we now consider the effect of a small 
external field h on the order parameter 9 ( x ) .  To this end we have to introduce a term 
h2 on the LHS of (8), but, in principle, we should also modify the propagators in the 
loop terms. Now the dominant effect of the loop, the renormalization of the four-point 
coupling, can be shown to come from the term dy G:; in L,, and there from the 
interval x I  c y  < 1. From the formulae given in [9] one can easily see that the propagators 
are quite insensitive to a small field in that interval. Therefore the effective quartic 
coupling li will be independent of h and the well known results for the field dependence 
of q ( x )  can be readily taken over from ordinary MFT. For small x a lower plateau 
9 0 = ( 3 h 2 / 4 G ) ' / 3  will appear which, increasing with h, will reach 9 , = l / w  on the 
Almeida-Thouless line [I61 hk,=4Gr3/3w', i.e. -I' when d > 8  and when 
6 < d < 8 (in the fluctuation-dominated regime). 

This coincides with the result found by Green et ol [17] which they obtained from 
the zero of the replicon self-energy in a one-loop calculation in the disordered phase. 
The agreement between these two completely independent calculations is quite reassur- 
ing and demonstrates the consistency of our effective MFT. The shift of the AT exponent 
is another instance of the general trend of restoration of scaling on approaching d = 6, 
as noted already by Fisher and Sompolinsky [ 151. Green et a/  [I71 suggested that the 
shifted AT exponent might be exact. This must indeed be true for all the exponents 
predicted by the effective MFT, because the singularity found in the four-point function 

-3.. -.PP O +  ,...ne +h*+ whi ln  +hn Iorol In"" ~~ -a--:- ,.f ,.-Ae- .1/2 nl :- -rAi..nr., -1- 
l Y L l  0L.L ,At "llrr I . I Y L  ...L.lb L 1 . C  1P16L L L I P I I S J  lr'llPlll "1 ","Cl I a> 111 " 1 " L A . L . J  L " L r . ,  
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does not proliferate, so the higher-loop corrections will not be more singular than the 
one-loop contribution worked out here. 

We feel we now have a coherent picture of how the theory evolves with decreasing 
dimension towards a field theory which perserves the richness of Parisi's MFT [ I ]  
without its disturbing feature of having two length scalest. The restoration of scaling 
upon approaching the upper critical dimension from above raises the hope that 
renormalization group methods will enable one to penetrate the range d < 6. Work is 
ir! progress ir! !his direaior!. 
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